
A COMPILER SYSTEM OF

A LINEAR LOGIC PROGRAMMING LANGUAGE

NAOYUKI TAMURA and YUKIO KANEDA

{tamura,kaneda}@seg.kobe-u.ac.jp
Department of Computer and Systems Engineering,

Faculty of Engineering, Kobe University

1-1 Rokkodai, Nada, Kobe 657 Japan

ABSTRACT

Linear logic developed by J.-Y. Girard can be described
as a logic of resources. There have been several pro-
posals for logic programming language based on lin-
ear logic: LO, LinLog, ACL, Lolli, Lygon, and Forum.
Lolli and Lygon are implemented as interpreter sys-
tems (on SML and λProlog for Lolli, on Prolog for
Lygon). But, none of them have been implemented as
a compiler system.

This paper describes a compiler system of a linear
logic programming language called LLP. New features
of LLP with various example programs are also shown.
LLP is a superset of Prolog and a subset of Lolli. LLP
programs are compiled into LLPAM (LLP Abstract
Machine) code, which is an extended WAM (Warren
Abstract Machine) designed for LLP.

Keywords: Logic programming, Linear logic, War-
ren Abstract Machine

1 INTRODUCTION

Linear logic1 developed by J.-Y. Girard [3] can be de-
scribed as a logic of resources. There have been several
proposals for logic programming language based on lin-
ear logic: LO [2], LinLog [1], ACL [5], Lolli2 [4], Lygon3

[7], and Forum4 [6]. Lolli and Lygon are implemented
as interpreter systems (on SML and λProlog for Lolli,
on Prolog for Lygon). But, none of them have been
implemented as a compiler system.

We developed a compiler system of a linear logic
programming language called LLP [8]. LLP programs
are compiled into LLPAM (LLP Abstract Machine)
code, which is an extended WAM (Warren Abstract
Machine) designed for LLP.

1http://www.csl.sri.com/linear/sri-csl-ll.html
2http://www.cs.hmc.edu/~hodas/research/lolli/
3http://www.cs.mu.oz.au/~winikoff/lygon/lygon.html
4http://www.cis.upenn.edu/~dale/forum/

LLP is a superset of Prolog and a subset of another
linear logic programming language Lolli. Prolog pro-
grams can be executed without any modification (how-
ever, some built-in predicates are missing in our cur-
rent implementation).
In this paper, we describe syntax and programming

features of LLP. Various example programs are also
included to show that LLP is suitable for describing
many kind of constraint satisfaction problems.

2 SYNTAX

A program of LLP is a sequence of clauses (in fact, they
are not clauses in the traditional sense). The syntax
of clauses can be written in BNF as follows.

C ::= A. | A:-G.

G ::= true | top | A | G1,G2 | G1&G2 |
G1;G2 | !G | R-<>G

R ::= S | !S | R1,R2

S ::= A | G-<>S | S1&S2

C, G, R, S, and A represent “clause”, “goal”, “re-
source”, “selective resource”, and “atomic formula” re-
spectively.
Since the following equivalence relations are valid in

linear logic, LLP compiler translates the left-hand side
resource formula by the right-hand side.

!(S1&S2) ≡ (!S1),(!S2)

G1-<>(G2-<>S) ≡ (G1,G2)-<>S

G-<>(S1&S2) ≡ (G-<>S1)&(G-<>S2)

Therefore, resource formulas can be rewritten as fol-
lows.

R ≡ S | !A | !(G-<>A) | R1,R2

S ≡ A | G-<>A | S1&S2

The order of the operator precedence is “:-”, “;”,
“&”, “,”, “-<>”, “!” from wider to narrower. Newly in-
troduced symbols to LLP (compared with Prolog) are

1

“&” (additive conjunction), “-<>” (linear implication),
“!” (bang), and “top”. LLP program not including
these symbols can be executed as a Prolog program.

3 RESOURCE HANDLING

In this section, we give an intuitive explanation of re-
source programming features of LLP. We assume read-
ers have a basic knowledge on Prolog.

The biggest difference of LLP is its resource con-
sciousness. LLP system maintains a resource table, to
which resources can be dynamically added or deleted
(consumed) during the execution.

3.1 Resource Addition

Resource is added by the execution of a goal formula
R-<>G. For example, the following query adds a re-
source r(1) to the resource table, then executes a goal
r(X) which consumes r(1) by letting X = 1.

?- r(1) -<> r(X).

In the execution of the goal R-<>G, all resources in
R should be consumed up during the execution of G.
For example, the following query fails since r(1) is not
consumed.

?- r(1) -<> true.

Resource formula G-<>A is used to represent a rule-
type resource. The goal G is executed on resource con-
sumption. The following query displays 1.

?- (write(X) -<> r(X)) -<> r(1).

Resource formula R1,R2 is used to add multiple re-
sources. The following query adds resources r(1) and
r(2), then consumes both of them by letting X = 1

and Y = 2, or X = 2 and Y = 1.

?- (r(1), r(2)) -<> (r(X), r(Y)).

Resource formulas !A and !(G-<>A) mean infinite
resources, that is, they can be consumed arbitrary
times (including zero times). The following query suc-
ceeds by letting X = 1 or X = 2.

?- (!r(1), !r(2)) -<> (r(X), r(X)).

Resource formula S1&S2 is used to represent a selec-
tive resource. For example, when r(1)&r(2) is added
as a resource, either r(1) or r(2) can be consumed,
but not both of them. The following query succeeds
by letting X = 1 or X = 2.

?- (r(1) & r(2)) -<> r(X).

3.2 Resource Consumption

Atomic goal formula A means resource consumption
and program invocation. All possibilities are examined
by backtracking. For example, the following program
displays 1 and 2.

r(2).

?- !r(1) -<> r(X), write(X), nl, fail.

In goal formula G1&G2, resources are copied before
execution, and the same resources should be consumed
in G1 and G2. The following query succeeds by letting
X = Y = 1 and Z = 2, or X = Y = 2 and Z = 1, because
r(X) and r(Y) should consume the same resources.

?- (r(1), r(2)) -<> ((r(X) & r(Y)), r(Z)).

Goal formula !G is just like G, but only infinite re-
sources can be consumed during the execution of G.
The following query succeeds by letting X = 1 and
Y = 2.

?- (!r(1), r(2)) -<> (!r(X), r(Y)).

Goal formula top means the erasure of remaining re-
sources. In the following queries, the first one succeeds,
but the second one fails because there is a remaining
resource.

?- (r(1), r(2)) -<> (r(X), top).

?- (r(1), r(2)) -<> r(X).

4 EXAMPLES

In this section, some example programs of LLP are de-
scribed. Through these small programs, we would like
to show programming techniques using resources, and
usage of resources for constraint satisfaction problems.
Some other useful applications, such as a proposi-

tional theorem prover, a database query, and a natural
language parser, are described in Hodas and Miller’s
paper [4]. In addition, current LLP distribution in-
cludes example programs, such as BIBD (Balanced In-
complete Design Block), pentomino puzzle solver, four
color problem, etc.

4.1 List Reverse

Resources can be used as “slots” to pass parameter
values and results.
The following program (list reverse) uses the re-

source formula result(Zs) to return the result from
the deepest recursive call of rev. For example, by the
goal reverse([1,2,3],Zs), the slot result(Zs) is
added as a resource and the subgoal rev([1,2,3],[])
is called. At the third recursive call rev([],[3,2,1]),
the resource result(Zs) is consumed and the Zs is
unified with [3,2,1].

2

reverse(Xs, Zs) :- result(Zs) -<> rev(Xs, []).

rev([], Zs) :- result(Zs).

rev([X|Xs], Zs) :- rev(Xs, [X|Zs]).

The same technique can be used to describe “ac-
cumulators”. For example, a program calculating the
summation of a given list can be written as follows.

sum(List, Sum) :- result(Sum) -<> s(List, 0).

s([], S) :- result(S).

s([X|Xs], S0) :- S is X+S0, s(Xs, S).

4.2 Knight Tour

Resources can be used to represent constrains.
Let us consider a problem of finding a Hamilton path

of a given graph. In Hamilton path, all vertices are vis-
ited exactly once. This constraint can be represented
easily by using resources for vertices. Visited vertices
are removed during the execution, and the program
succeeds only when all vertices are visited exactly once.

The following program finds a tour of Knight (a chess
piece) on a 5× 5 board.

knight5(Tour) :-

(k(1,1), k(1,2), k(1,3), k(1,4), k(1,5),

k(2,1), k(2,2), k(2,3), k(2,4), k(2,5),

k(3,1), k(3,2), k(3,3), k(3,4), k(3,5),

k(4,1), k(4,2), k(4,3), k(4,4), k(4,5),

k(5,1), k(5,2), k(5,3), k(5,4), k(5,5)) -<>

tour(1, 1, Tour).

tour(I, J, [(I,J)|Tour]) :-

k(I, J), next(I, J, I1, J1), tour(I1, J1, Tour).

tour(I, J, [(I,J)]) :-

k(I, J).

next(I, J, I1, J1) :- I1 is I-2, J1 is J-1.

next(I, J, I1, J1) :- I1 is I-2, J1 is J+1.

next(I, J, I1, J1) :- I1 is I-1, J1 is J-2.

next(I, J, I1, J1) :- I1 is I-1, J1 is J+2.

next(I, J, I1, J1) :- I1 is I+1, J1 is J-2.

next(I, J, I1, J1) :- I1 is I+1, J1 is J+2.

next(I, J, I1, J1) :- I1 is I+2, J1 is J-1.

next(I, J, I1, J1) :- I1 is I+2, J1 is J+1.

4.3 Kirkman’s School Girl Problem

In 1850, Kirkman posed the following problem, which
relates to a BIBD (Balanced Incomplete Block Design)
problem in mathematics.

How 15 school girls can walk in 5 rows of 3
each for 7 days so that no girl walks with any
other girl in the same triplet more than once.

The following program finds the arrangement.

kirkman(Groups) :-

(arrange(35, Groups) -<> cont) -<> gen_res(15).

gen_res(0) :- cont.

gen_res(N) :- N > 0,

(g(N),g(N),g(N),g(N),g(N),g(N),g(N)) -<>

gen_res(1, N).

gen_res(N, N) :-

N1 is N-1, gen_res(N1).

gen_res(I, N) :-

I < N, I1 is I+1,

meet(I, N) -<> gen_res(I1, N).

arrange(0, []).

arrange(I, [[G1,G2,G3]|Groups]) :-

I > 0,

% pick up 3 girls

g(G1), g(G2), g(G3),

% haven’t met each other

meet(G1, G2), meet(G1, G3), meet(G2, G3),

I1 is I-1, arrange(I1, Groups).

This program works as follows.

(1) gen_res creates resources of seven g(i)’s for each
i = 1..15 and meet(i, j) for each i = 1..14, j =
(i + 1)..15. Seven g(i)’s correspond to seven at-
tendances of i-th girl. Resource meet(i, j) corre-
sponds to each pair of girls.

(2) Then, gen_res calls a goal cont, which calls
the goal arrange(35, Groups) because cont is
a rule-type resource.

(3) arrange finds 35 groups, so that each group con-
sists of three girls, each girl appears in seven
groups, and any pair of girls is included in exactly
one group.

4.4 Cryptarithmetic Puzzles

By using top, we can represent a condition “at most
once”.
Let us consider a program to solve a famous

cryptarithmetic puzzle: “SEND+MORE=MONEY”.
In this puzzle, digits can be used at most once. In the
following program, remaining digits are erased by top

predicate.

crypt([S,E,N,D]+[M,O,R,E]=[M,O,N,E,Y]) :-

(d(0), d(1), d(2), d(3), d(4),

d(5), d(6), d(7), d(8), d(9))

-<>

(add(0, D, E, Y, C1),

add(C1, N, R, E, C2),

add(C2, E, O, N, C3),

add(C3, S, M, O, C4),

add(C4, 0, 0, M, 0),

S \== 0, M \== 0,

top).

add(C0, X, Y, Z, C1) :-

digit(X), digit(Y), digit(Z),

Sum is C0+X+Y, Z is Sum mod 10, C1 is Sum//10.

3

digit(X) :- var(X), d(X).

digit(X) :- nonvar(X).

4.5 N-Queens

The last example is the N -queens problem. The fol-
lowing program maps each column, each right-up diag-
onal, and each right-down diagonal to resources c(),
u(), and d() respectively. Attack check is done au-
tomatically by consuming c(j), u(i+ j), and d(i− j)
when placing a queen at (i, j).

queen(N, Q) :- (n(N), result(Q)) -<> place(N).

place(1) :-

(c(1),u(2),d(0)) -<> (n(N), solve(N, [])).

place(I) :-

I > 1, I1 is I-1,

U1 is 2*I, U2 is 2*I-1, D1 is I-1, D2 is 1-I,

(c(I),u(U1),u(U2),d(D1),d(D2)) -<> place(I1).

solve(0, Q) :-

result(Q), top.

solve(I, Q) :-

I > 0, c(J), U is I+J, u(U), D is I-J, d(D),

I1 is I-1, solve(I1, [J|Q]).

For example, at the execution of the goal
queen(8,Q), the place predicate adds the resources
c(1), . . . , c(8), u(2), . . . , u(16), d(-7), . . . , d(7),
then solve(8,[]) is called. The solve predicate finds
a solution by consuming c(j), u(i + j), and d(i − j)
for each row i = 1..8. After placing 8 queens, the result
is returned through the slot result(Q), and remaining
resources are erased by the top predicate.

5 LLP COMPILER SYSTEM

LLP is a first compiler system for linear logic program-
ming languages. LLP compiles LLP programs into an
abstract machine code, which is interpreted by the ab-
stract machine emulator. The abstract machine, called
LLPAM, is an extension of the WAM (Warren Abstract
Machine [9]). Two new data areas, three new registers,
and thirteen new instructions are added to the WAM.
Please refer to our previous paper [8] for the details.

The compiler is written in Prolog (we are using SIC-
Stus Prolog version 2.1 and BinProlog 5.00). The LL-
PAM emulator is written in ANSI C (we are using GNU
C compiler version 2.7.0).

The newest package (version 0.41) including all
source code can be obtained from the following Web
page.

http://bach.seg.kobe-u.ac.jp/llp/

The system is still under development, and has some
limitations. All of them are planned to be solved in a
future release.

• No debugging aids. A small interpreter system
with tracing facility is available.

• Few built-in predicates (no file I/O, no as-
sert/retract).

• No garbage collectors.

• No optimizations (register allocation, environ-
ment trimming, last-call-optimization). The
speed of the compiled code for Prolog programs
is about 2 or 3 times slower than SICStus Prolog
2.1 WAM code.

• No floating point numbers, integer is 28 bits
signed.

6 CONCLUSION

We described new programming features and various
example programs of a compiler system of a linear logic
programming language called LLP. Its resource han-
dling features enables to describe many kind of con-
straint satisfaction problems.

References

[1] J.-M. Andreoli. Logic programming with focusing
proofs in linear logic. Journal of Logic and Com-
putation, 2(3):297–347, 1992.

[2] J.-M. Andreoli and R. Pareschi. Linear objects:
Logical processes with built-in inheritance. New
Generation Computing, 9:445–473, 1991.

[3] J.-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1–102, 1987.

[4] J. S. Hodas and D. Miller. Logic programming in a
fragment of intuitionistic linear logic. Information
and Computation, 110(2):327–365, 1994. Extended
abstraction in the Proceedings of the Sixth Annual
Symposium on Logic in Computer Science, Ams-
terdam, July 15–18, 1991.

[5] N. Kobayashi and A. Yonezawa. ACL — a con-
current linear logic programming paradigm. In
D. Miller, editor, Proceedings of the International
Symposium on Logic Programming, pages 279–294,
Vancouver, Canada, October 1993. MIT Press.

[6] D. Miller. A multiple-conclusion meta-logic. The-
oretical Computer Science, 165(1):201–232, 1996.

[7] D. Pym and J. Harland. A uniform proof-theoretic
investigation of linear logic programming. Jour-
nal of Logic and Computation, 4(2):175–207, April
1994.

[8] Naoyuki Tamura and Yukio Kaneda. Extension
of WAM for a linear logic programming language.
In Proceedings of The Second Fuji International
Workshop on Functional and Logic Programming,
Nov. 1996.

[9] David H. D. Warren. An abstract Prolog instruc-
tion set. Technical Report Technical Note 309, SRI
International, Menlo Park, CA, Oct. 1983.

4

