1. Intro. This program generates clauses for the transition relation from time \(t \) to time \(t+1 \) in Conway’s Game of Life, assuming that all of the potentially live cells at time \(t \) belong to a pattern that’s specified in stdin. The pattern is defined by one or more lines representing rows of cells, where each line has ‘.’ in a cell that’s guaranteed to be dead at time \(t \), otherwise it has ‘*’. The time is specified separately as a command-line parameter.

The Boolean variable for cell \((x, y)\) at time \(t \) is named by its so-called “xty code,” namely by the decimal value of \(x \), followed by a code letter for \(t \), followed by the decimal value of \(y \). For example, if \(x = 10 \) and \(y = 11 \) and \(t = 0 \), the variable that indicates liveness of the cell is \(10a11 \); and the corresponding variable for \(t = 1 \) is \(10b11 \).

Up to 19 auxiliary variables are used together with each xty code, in order to construct clauses that define the successor state. The names of these variables are obtained by appending one of the following two-character combinations to the xty code: \(A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, D1, D2, E1, E2, F1, F2, G1, G2 \). These variables are derived from the Bailleux–Boufkhad method of encoding cardinality constraints: The auxiliary variable \(Ak \) stands for the condition “at least \(k \) of the eight neighbors are alive.” Similarly, \(Bk \) stands for “at least \(k \) of the first four neighbors are alive,” and \(Ck \) accounts for the other four neighbors. Codes \(D, E, F, \) and \(G \) refer to pairs of neighbors. Thus, for instance, \(10a11C2 \) means that at least two of the last four neighbors of cell \((10, 11)\) are alive.

Those auxiliary variables receive values by means of up to 77 clauses per cell. For example, if \(u \) and \(v \) are the neighbors of cell \(z \) that correspond to a pairing of type \(D \), there are six clauses

\[
\bar{u}d_1, \; \bar{v}d_1, \; \bar{u}\bar{v}d_2, \; uv\bar{d}_1, \; ud_2, \; \bar{v}d_2.
\]

The sixteen clauses

\[
\begin{align*}
&\bar{d}_1b_1, \; \bar{e}_1b_1, \; d_2b_2, \; \bar{d}_1\bar{e}_1b_2, \; \bar{e}_2b_2, \; d_2\bar{e}_1b_3, \; \bar{d}_1\bar{e}_2b_3, \; \bar{d}_2\bar{e}_2b_4, \\
&d_1e_1b_1, \; d_1e_2b_2, \; d_2e_1b_2, \; d_1b_3, \; d_2e_2b_3, \; e_1b_3, \; d_2b_4, \; e_2b_4
\end{align*}
\]

define \(b \) variables from \(d \)’s and \(e \)’s; and another sixteen define \(c \)’s from \(f \)’s and \(g \)’s in the same fashion. A similar set of 21 clauses will define the \(a \)’s from the \(b \)’s and \(c \)’s.

Once the \(a \)’s are defined, thus essentially counting the live neighbors of cell \(z \), the next state \(z' \) is defined by five further clauses

\[
\begin{align*}
&\bar{a}_4z', \; a_2\bar{z}', \; a_3\bar{z}z', \; \bar{a}_3a_4\bar{z}', \; \bar{a}_3a_4\bar{z}z'.
\end{align*}
\]

For example, the last of these states that \(z' \) will be true (i.e., that cell \(z \) will be alive at time \(t+1 \)) if \(z \) is alive at time \(t \) and has \(\geq 2 \) live neighbors but not \(\geq 4 \).

Nearby cells can share auxiliary variables, according to a tricky scheme that is worked out below. In consequence, the actual number of auxiliary variables and clauses per cell is reduced from 19 and 77 + 5 to 13 and 57 + 5, respectively, except at the boundaries.
2. So here's the overall outline of the program.

```c
#define maxx 50 /* maximum number of lines in the pattern supplied by stdin */
#define maxy 50 /* maximum number of columns per line in stdin */
#include <stdio.h>
#include <stdlib.h>
char p[maxx + 2][maxy + 2]; /* is cell (x, y) potentially alive? */
char have_b[maxx + 2][maxy + 2]; /* did we already generate b(x, y)? */
char have_d[maxx + 2][maxy + 2]; /* did we already generate d(x, y)? */
char have_c[maxx + 2][maxy + 4]; /* did we already generate c(x, y)? */
char have_f[maxx + 4][maxy + 2]; /* did we already generate f(x, y)? */
int tt; /* time as given on the command line */
int xmax, ymax; /* the number of rows and columns in the input pattern */
int xmin = maxx, ymin = maxy; /* limits in the other direction */
char timecode[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" "!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"; /* codes for 0 ≤ t ≤ 83 */
int clauseptr; /* this many literals are in the current clause */

main(int argc, char *argv[]) {
    int j, k, x, y;
    (Process the command line 3);
    (Input the pattern 4);
    for (x = xmin - 1; x ≤ xmax + 1; x++)
        for (y = ymin - 1; y ≤ ymax + 1; y++) {
            (If cell (x, y) is obviously dead at time t + 1, continue 5);
            a(x, y);
            zprime(x, y);
        }
}

3. (Process the command line 3) ≡
if (argc ≠ 2 ∨ sscanf(argv[1], "%d", &tt) ≠ 1) {
    fprintf(stderr, "Usage: %s <\n", argv[0]);
    exit(-1);
}
if (tt < 0 ∨ tt > 82) {
    fprintf(stderr, "The time should be between 0 and 82, not %d! \n", tt);
    exit(-2);
}
This code is used in section 2.
```
4. Input the pattern 4 \equiv \\
\text{for } (x = 1; ; x++) \\
\text{if } (-\text{fgets}(buf, maxy + 2, stdin)) \text{ break;} \\
\text{if } (x > maxx) \\
\text{fprintf(stderr, }"\text{Sorry, the pattern should have at most %d rows! }\n\text{", maxx); exit(-3);}
\text{for } (y = 1; buf[y - 1] \neq \'\n\'; y++) \\
\text{if } (y > maxy) \\
\text{fprintf(stderr, }"\text{Sorry, the pattern should have at most %d columns! }\n\text{", maxy); exit(-4);}
\text{if } (buf[y - 1] \equiv \'\star\') \\
p[x][y] = 1; \\
\text{if } (y > ymax) ymax = y; \\
\text{if } (y < ymin) ymin = y; \\
\text{if } (x > xmax) xmax = x; \\
\text{if } (x < xmin) xmin = x; \\
\text{else if } (buf[y - 1] \neq \'\', \') \\
\text{fprintf(stderr, }"\text{Unexpected character }\%c\text{ found in the pattern! }\n\text{", buf[y - 1]); exit(-5);}
\}
This code is used in section 2.

5. \textbf{#define } pp(xx, yy) \ ((xx) \geq 0 \land (yy) \geq 0 \ ? p[xx][yy] : 0) \\
\textbf{(If cell } (x, y) \text{ is obviously dead at time } t + 1, \textbf{continue 5) } \equiv \\
\text{if } (pp(x - 1, y - 1) + pp(x - 1, y) + pp(x - 1, y + 1) + pp(x, y - 1) + p[x][y] + p[x][y + 1] + pp(x + 1, y - 1) + p[x + 1][y] + p[x + 1][y + 1] < 3) \textbf{continue;}
This code is used in section 2.
Clauses are assembled in the clause array (surprise), where we put encoded literals. The code for a literal is an unsigned 32-bit quantity, where the leading bit is 1 if the literal should be complemented. The next three bits specify the type of the literal (0 thru 7 for plain and A–G); the next three bits specify an integer k; and the next bit is zero. That leaves room for two 12-bit fields, which specify x and y.

Type 0 literals have $k = 0$ for the ordinary xty code. However, the value $k = 1$ indicates that the time code should be for $t + 1$ instead of t. And $k = 2$ denotes a special “tautology” literal, which is always true. If the tautology literal is complemented, we omit it from the clause; otherwise we omit the entire clause. Finally, $k = 7$ denotes an auxiliary literal, used to avoid clauses of length 4.

Here’s a subroutine that outputs the current clause and resets the clause array.

```c
#define taut (2 << 25)  // 2^25
#define sign (1U << 31) // 2^31

void outclause(void)
{
    register int c, k, x, y, p;
    for (p = 0; p < clauseptr; p++)
        if (clause[p] == taut) goto done;
    for (p = 0; p < clauseptr; p++)
        if (clause[p] != taut + sign) {
            if (clause[p] >> 31) printf("\n");
            else printf("\n");
            c = (clause[p] >> 28) & 0x7;
            k = (clause[p] >> 25) & 0x7;
            x = (clause[p] >> 12) & 0xfff;
            y = clause[p] & 0xfff;
            if (c)
                printf("%d%c%d%c%d", x, timecode[tt], y, c + '}', k);
            else if (k == 7)
                printf("%d%c%d", x, timecode[tt], y);
            else
                printf("%d%c%d", x, timecode[tt+k], y);
        }
    printf("\n");
    done: clauseptr = 0;
}
```

See also sections 7, 8, 9, 10, 11, 12, 14, and 15.

This code is used in section 2.

Here’s another, which puts a type-0 literal into clause.

```c
#include "sat-life.h"

void applit(int x, int y, int bar, int k)
{
    if ($k = 0 \land (x < xmin \lor x > xmax \lor y < ymin \lor y > ymax \lor p[x][y] \equiv 0))$
        clause[clauseptr++] = (bar ? 0 : sign) + taut;
    else
        clause[clauseptr++] = (bar ? sign : 0) + (k << 25) + (x << 12) + y;
}
```
8. The d and e subroutines are called for only one-fourth of all cell addresses \((x, y)\). Indeed, one can show that \(x\) is always odd, and that \(y \mod 4 < 2\).

Therefore we remember if we’ve seen \((x, y)\) before.

Slight trick: If \(yy\) is not in range, we avoid generating the clause \(d_k\) twice.

\[
\text{#define newlit}(x, y, c, k) \quad \text{clause}[\text{clauseptr}++] = ((c) \ll 28) + ((k) \ll 25) + ((x) \ll 12) + (y)
\]

\[
\text{#define newcomplit}(x, y, c, k) \quad \text{clause}[\text{clauseptr}++] = \text{sign} + ((c) \ll 28) + ((k) \ll 25) + ((x) \ll 12) + (y)
\]

(Subroutines 6) +≡

\[
\text{void } d(\text{int } x, \text{int } y) \{
\text{register } x1 = x - 1, \ x2 = x, \ yy = y + 1;
\text{if } (\text{have}_d[x][y] \neq tt + 1) \{
\text{applit}(x1, y, 1, 0), \text{newlit}(x, y, 4, 1), \text{outclause}();
\text{applit}(x2, y, 1, 0), \text{newlit}(x, y, 4, 1), \text{outclause}();
\text{applit}(x1, y, 1, 0), \text{applit}(x2, y, 1, 0), \text{newlit}(x, y, 4, 2), \text{outclause}();
\text{applit}(x1, y, 0, 0), \text{applit}(x2, y, 0, 0), \text{newcomplit}(x, y, 4, 1), \text{outclause}();
\text{applit}(x1, y, 0, 0), \text{newcomplit}(x, y, 4, 2), \text{outclause}();
\text{if } (yy \geq ymin \land yy \leq ymax) \text{ applit}(x2, y, 0, 0), \text{newcomplit}(x, y, 4, 2), \text{outclause}();
\text{have}_d[x][y] = tt + 1;
\}
\}
\]

\[
\text{void } e(\text{int } x, \text{int } y) \{
\text{register } x1 = x - 1, \ x2 = x, \ yy = y - 1;
\text{if } (\text{have}_e[x][y] \neq tt + 1) \{
\text{applit}(x1, y, 1, 0), \text{newlit}(x, y, 5, 1), \text{outclause}();
\text{applit}(x2, y, 1, 0), \text{newlit}(x, y, 5, 1), \text{outclause}();
\text{applit}(x1, y, 1, 0), \text{applit}(x2, y, 1, 0), \text{newlit}(x, y, 5, 2), \text{outclause}();
\text{applit}(x1, y, 0, 0), \text{applit}(x2, y, 0, 0), \text{newcomplit}(x, y, 5, 1), \text{outclause}();
\text{applit}(x1, y, 0, 0), \text{newcomplit}(x, y, 5, 2), \text{outclause}();
\text{if } (yy \geq ymin \land yy \leq ymax) \text{ applit}(x2, y, 0, 0), \text{newcomplit}(x, y, 5, 2), \text{outclause}();
\text{have}_e[x][y] = tt + 1;
\}
\}
\]

9. The f subroutine can’t be shared quite so often. But we do save a factor of 2, because \(x + y\) is always even.

(Subroutines 6) +≡

\[
\text{void } f(\text{int } x, \text{int } y) \{
\text{register } xx = x - 1, \ y1 = y, \ y2 = y + 1;
\text{if } (\text{have}_f[x][y] \neq tt + 1) \{
\text{applit}(xx, y, 1, 0), \text{newlit}(x, y, 6, 1), \text{outclause}();
\text{applit}(xx, y2, 1, 0), \text{newlit}(x, y, 6, 1), \text{outclause}();
\text{applit}(xx, y, 1, 0), \text{applit}(xx, y2, 1, 0), \text{newlit}(x, y, 6, 2), \text{outclause}();
\text{applit}(xx, y1, 0, 0), \text{applit}(xx, y2, 0, 0), \text{newcomplit}(x, y, 6, 1), \text{outclause}();
\text{applit}(xx, y1, 0, 0), \text{newcomplit}(x, y, 6, 2), \text{outclause}();
\text{if } (xx \geq xmin \land xx \leq xmax) \text{ applit}(xx, y2, 0, 0), \text{newcomplit}(x, y, 6, 2), \text{outclause}();
\text{have}_f[x][y] = tt + 1;
\}
\}
\]
10. The \(g \) subroutine cleans up the dregs, by somewhat tediously locating the two neighbors that weren’t handled by \(d \), \(e \), or \(f \). No sharing is possible here.

(Subroutines 6) \(+ \equiv \\
\text{void } g(\text{int } x, \text{int } y) \\
\{
 \text{register } x1, x2, y1, y2; \\
 \text{if } (x & 1) x1 = x - 1, y1 = y, x2 = x + 1, y2 = y \oplus 1; \\
 \text{else } x1 = x + 1, y1 = y, x2 = x - 1, y2 = y - 1 + ((y & 1) \ll 1); \\
 \text{applit}(x1, y1, 1, 0), \text{newlit}(x, y, 7, 1), \text{outclause}(); \\
 \text{applit}(x2, y2, 1, 0), \text{newlit}(x, y, 7, 1), \text{outclause}(); \\
 \text{applit}(x1, y1, 1, 0), \text{applit}(x2, y2, 1, 0), \text{newlit}(x, y, 7, 2), \text{outclause}(); \\
 \text{applit}(x1, y1, 0, 0), \text{applit}(x2, y2, 0, 0), \text{newcomplit}(x, y, 2, 7, 1), \text{outclause}(); \\
 \text{applit}(x1, y1, 0, 0), \text{newcomplit}(x, y, 7, 2), \text{outclause}(); \\
 \text{applit}(x2, y2, 0, 0), \text{newcomplit}(x, y, 7, 2), \text{outclause}(); \\
\} \\
\}

11. Fortunately the \(b \) subroutine can be shared (since \(x \) is always odd), thus saving half of the sixteen clauses generated.

(Subroutines 6) \(+ \equiv \\
\text{void } b(\text{int } x, \text{int } y) \\
\{
 \text{register } j, k, xx = x, y1 = y - (y & 2), y2 = y + (y & 2); \\
 \text{if } (\text{have } b[x][y] \neq tt + 1) \\
 \{ \\
 d(xx, y1); \\
 e(xx, y2); \\
 \text{for } (j = 0; j < 3; j++) \\
 \text{for } (k = 0; k < 3; k++) \\
 \{ \\
 \text{if } (j + k) \\
 \{ \\
 \text{if } (j) \text{ newcomplit}(xx, y1, 4, j); \text{ /* } d_j */ \\
 \text{if } (k) \text{ newcomplit}(xx, y2, 5, k); \text{ /* } e_k */ \\
 \text{newlit}(x, y, 2, j + k); \text{ /* } b_{j+k} */ \\
 \text{outclause}(); \\
 \text{if } (j) \text{ newlit}(xx, y1, 4, 3 - j); \text{ /* } d_{3-j} */ \\
 \text{if } (k) \text{ newlit}(xx, y2, 5, 3 - k); \text{ /* } e_{3-k} */ \\
 \text{newcomplit}(x, y, 2, 5 - j - k); \text{ /* } b_{5-j-k} */ \\
 \text{outclause}(); \\
 \}
 \}
\} \\
\text{have } b[x][y] = tt + 1; \\
\}
\}
12. The (unshared) c subroutine handles the other four neighbors, by working with f and g instead of d and e.

If $y = 0$, the overlap rules set $y^I = -1$, which can be problematic. I’ve decided to avoid this case by omitting f when it is guaranteed to be zero.

(Subroutines 6) +≡

void c(int x, int y)
{
 register j, k, xI, yI;
 if ($x & 1$) $xI = x + 2, yI = (y - 1) \| 1$;
 else $xI = x, yI = y \& -2$;
 $g(x, y)$;
 if ($xI - 1 < xmin \lor xI - 1 > xmax \lor yI + 1 < ymin \lor yI > ymax$) ⟨Set c equal to g 13⟩
 else {
 $f(xI, yI)$;
 for ($j = 0; j < 3; j++$)
 for ($k = 0; k < 3; k++$)
 if ($j + k$) {
 if (j) newcomplit($xI, yI, 6, j$); /* f_j */
 if (k) newcomplit($x, y, 7, k$); /* g_k */
 newlit($x, y, 3, j + k$); /* c_{j+k} */
 outclause();
 if (j) newlit($xI, yI, 6, 3 - j$); /* f_{3-j} */
 if (k) newlit($x, y, 7, 3 - k$); /* g_{3-k} */
 newcomplit($x, y, 3, 5 - j - k$); /* c_{5-j-k} */
 outclause();
 }
 outclause();
 }
}

13. ⟨Set c equal to g 13⟩ ≡

{
 for ($k = 1; k < 3; k++$) {
 newcomplit($x, y, 7, k$), newlit($x, y, 3, k$), outclause(); /* $\bar{g}_k \lor c_k$ */
 newlit($x, y, 7, k$), newcomplit($x, y, 3, k$), outclause(); /* $g_k \lor \bar{c}_k$ */
 }
 newcomplit($x, y, 3, 3$), outclause(); /* \bar{c}_3 */
 newcomplit($x, y, 3, 4$), outclause(); /* \bar{c}_4 */
}

This code is used in section 12.
14. Totals over all eight neighbors are then deduced by the \(a \) subroutine.

\[\text{Subroutines 6} \implies\]

```c
void a(int x, int y)
{
    register j, k, xx = x | 1;
    b(xx, y);
    c(x, y);
    for (j = 0; j < 5; j++)
        for (k = 0; k < 5; k++)
            if (j + k > 1 \land j + k < 5) {
                if (j) newcomplit(xx, y, 2, j); /* \( \bar{b}_j \) */
                if (k) newcomplit(x, y, 3, k); /* \( \bar{c}_k \) */
                newlit(x, y, 1, j + k); /* \( a_{j+k} \) */
                outclause();
            }
    for (j = 0; j < 5; j++)
        for (k = 0; k < 5; k++)
            if (j + k > 2 \land j + k < 6 \land j * k) {
                if (j) newlit(xx, y, 2, j); /* \( b_j \) */
                if (k) newlit(x, y, 3, k); /* \( c_k \) */
                newcomplit(x, y, 1, j + k - 1); /* \( \bar{a}_{j+k-1} \) */
                outclause();
            }
}
```

15. Finally, as mentioned at the beginning, \(z' \) is determined from \(z, a_2, a_3, \) and \(a_4. \)

I actually generate six clauses, not five, in order to stick to 3SAT.

\[\text{Subroutines 6} \implies\]

```c
void zprime(int x, int y)
{
    newcomplit(x, y, 1, 4), applit(x, y, 1, 1), outclause(); /* \( \bar{a}_4z' \) */
    newlit(x, y, 1, 2), applit(x, y, 1, 1), outclause(); /* \( a_2z' \) */
    newlit(x, y, 1, 3), applit(x, y, 0, 0), applit(x, y, 1, 1), outclause(); /* \( a_3z' \) */
    newcomplit(x, y, 1, 3), newlit(x, y, 1, 4), applit(x, y, 0, 1), outclause(); /* \( a_3a_4z' \) */
    applit(x, y, 0, 7), newcomplit(x, y, 1, 2), newlit(x, y, 1, 4), outclause(); /* \( x\bar{a}_2a_4 \) */
    applit(x, y, 1, 7), applit(x, y, 1, 0), applit(x, y, 0, 1), outclause(); /* \( x\bar{z}z' \) */
}
```
16. Index.

\[a: 14, \]
\[\textit{applit}: \ 7, 8, 9, 10, 15. \]
\[\textit{argc}: \ 2, 3. \]
\[\textit{argv}: \ 2, 3. \]
\[b: 11. \]
\[\textit{buf}: \ 2, 4. \]
\[c: 6, 12. \]
\[\textit{clause}: \ 2, 6, 7, 8. \]
\[\textit{clauseptr}: \ 2, 6, 7, 8. \]
\[d: 8. \]
\[\textit{done}: \ 6. \]
\[e: 8. \]
\[\textit{exit}: \ 3, 4. \]
\[f: 9. \]
\[\textit{fgets}: \ 4. \]
\[\textit{fprintf}: \ 3, 4. \]
\[g: 10. \]
\[\textit{have_b}: \ 2, 11. \]
\[\textit{have_d}: \ 2, 8. \]
\[\textit{have_e}: \ 2, 8. \]
\[\textit{have_f}: \ 2, 9. \]
\[j: 2, 11, 12, 14. \]
\[k: 2, 6, 7, 11, 12, 14. \]
\[\textit{main}: \ 2. \]
\[\textit{maxx}: \ 2, 4. \]
\[\textit{maxy}: \ 2, 4. \]
\[\textit{newcomplit}: \ 8, 9, 10, 11, 12, 13, 14, 15. \]
\[\textit{newlit}: \ 8, 9, 10, 11, 12, 13, 14, 15. \]
\[\textit{outclause}: \ 6, 8, 9, 10, 11, 12, 13, 14, 15. \]
\[p: 2, 6. \]
\[\textit{pp}: \ 5. \]
\[\textit{printf}: \ 6. \]
\[\textit{sign}: \ 6, 7, 8. \]
\[\textit{sscanf}: \ 3. \]
\[\textit{stderr}: \ 3, 4. \]
\[\textit{stdin}: \ 1, 2, 4. \]
\[\textit{taut}: \ 6, 7. \]
\[\textit{timecode}: \ 2, 6. \]
\[tt: 2, 3, 6, 8, 9, 11. \]
\[x: 2, 6, 7, 8, 9, 10, 11, 12, 14, 15. \]
\[\textit{xmax}: \ 2, 4, 7, 9, 12. \]
\[\textit{xmin}: \ 2, 4, 7, 9, 12. \]
\[xx: 5, 9, 11, 14. \]
\[x1: 8, 10, 12. \]
\[x2: 8, 10. \]
\[y: 2, 6, 7, 8, 9, 10, 11, 12, 14, 15. \]
\[\textit{ymax}: \ 2, 4, 7, 8, 12. \]
\[\textit{ymin}: \ 2, 4, 7, 8, 12. \]
\[yy: 5, 8. \]
\[y1: 9, 10, 11, 12. \]
(If cell \((x, y)\) is obviously dead at time \(t + 1\), \textbf{continue} 5) Used in section 2.

(Input the pattern 4) Used in section 2.

(Process the command line 3) Used in section 2.

(Set \(c\) equal to \(g\) 13) Used in section 12.

(Subroutines 6, 7, 8, 9, 10, 11, 12, 14, 15) Used in section 2.
SAT-LIFE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro</td>
<td>1 1</td>
</tr>
<tr>
<td>Index</td>
<td>16 9</td>
</tr>
</tbody>
</table>